
PyArmadillo: a streamlined linear algebra library for Python

Jason Rumengan †‡, Terry Yue Zhuo �, Conrad Sanderson †∗

† Data61/CSIRO, Australia
‡ Queensland University of Technology, Australia
� University of New South Wales, Australia
∗ Griffith University, Australia

Abstract

PyArmadillo is a linear algebra library for the Python language, with the aim of closely mirroring the
programming interface of the widely used Armadillo C++ library, which in turn is deliberately similar to
Matlab. PyArmadillo hence facilitates algorithm prototyping with Matlab-like syntax directly in Python, and
relatively straightforward conversion of PyArmadillo-based Python code into performant Armadillo-based
C++ code. The converted code can be used for purposes such as speeding up Python-based programs in
conjunction with pybind11, or the integration of algorithms originally prototyped in Python into larger C++
codebases. PyArmadillo provides objects for matrices and cubes, as well as over 200 associated functions for
manipulating data stored in the objects. Integer, floating point and complex numbers are supported. Various
matrix factorisations are provided through integration with LAPACK, or one of its high performance drop-in
replacements such as Intel MKL or OpenBLAS. PyArmadillo is open-source software, distributed under the
Apache 2.0 license; it can be obtained at https://pyarma.sourceforge.io or via the Python Package Index in
precompiled form.

Background

Armadillo is a popular linear algebra and scientific computing library for the C++ language [13, 14] that
has three main characteristics: (i) a high-level programming interface deliberately similar to Matlab, (ii) an
expression evaluator (based on template meta-programming) that automatically combines several operations
to increase speed and efficiency, and (iii) an efficient mapper between mathematical expressions and low-level
BLAS/LAPACK functions [11, 15]. Matlab is widely used in both industrial and academic contexts, providing
a programming interface that allows mathematical expressions to be written in a concise and natural
manner [10], especially in comparison to directly using low-level libraries such as LAPACK [2]. In industrial
settings, algorithms are often first prototyped in Matlab, before conversion into another language, such as C++,
for the purpose of integration into products. The similarity of the programming interfaces between Armadillo
and Matlab facilitates direct prototyping in C++, as well as the conversion of research code into production
environments. Armadillo is also often used for implementing performance critical parts of software packages
running under the R environment for statistical computing [12], via the RcppArmadillo bridge [5].

Over the past few years, Python has become popular for data science and machine learning. This partly
stems from a rich ecosystem of supporting frameworks and packages, as well as lack of licensing costs in
comparison to Matlab. Python allows relatively quick prototyping of algorithms, aided by its dynamically
typed nature and the interpreted execution of user code, avoiding time-consuming compilation into machine
code. However, for the joint purpose of algorithm prototyping and deployment, the flexibility of Python comes
with two main issues: (i) slow execution speed due to the interpreted nature of the language, (ii) difficulty with
integration of code written in Python into larger programs and/or frameworks written in another language.
The first issue can be somewhat addressed through conversion of Python-based code into the low-level Cython
language [4]. However, since Cython is closely tied with Python, conversion of Python code into C++ may be
preferred as it also addresses the second issue, as well as providing a higher-level of abstraction.
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PyArmadillo is aimed at: (i) users that prefer compact Matlab-like syntax rather than the somewhat more
verbose syntax provided by NumPy/SciPy [6, 17], and (ii) users that would like a straightforward conversion
path to performant C++ code. More specifically, PyArmadillo aims to closely mirror the programming
interface of the Armadillo library, thereby facilitating the prototyping of algorithms with Matlab-like
syntax directly in Python. Furthermore, PyArmadillo-based Python code can be easily converted into
high-performance Armadillo-based C++ code. Due to the similarity of the programming interfaces, the risk
of introducing bugs in the conversion process is considerably reduced. Moreover, conversion into C++ based
code allows taking advantage of expression optimisation performed at compile-time by Armadillo, resulting
in further speedups. The resulting code can be used in larger C++ programs, or used as a replacement of
performance critical parts within a Python program with the aid of the pybind11 interface layer [9].

Functionality

PyArmadillo provides matrix objects for several distinct element types: integers, single- and double-precision
floating point numbers, as well as complex numbers. In addition to matrices, PyArmadillo also has
support for cubes (3 dimensional arrays), where each cube can be treated as an ordered set of matrices.
Over 200 functions are provided for manipulating data stored in the objects, covering the following areas:
fundamental arithmetic operations, contiguous and non-contiguous submatrix views, diagonal views,
element-wise functions, scalar/vector/matrix valued functions of matrices, statistics, signal processing,
storage of matrices in files, matrix decompositions/factorisations, matrix inverses, and equation solvers.
PyArmadillo matrices and cubes are convertible to/from NumPy arrays, allowing users to tap into the wider
Python data science ecosystem, including plotting tools such as Matplotlib [7].

An overview of the available functionality in PyArmadillo (as of version 0.500) is given in Tables 1 through to 8.
Table 1 briefly describes the member functions and variables of the main matrix class; Table 2 lists the
main subset of overloaded Python operators; Table 3 outlines matrix decompositions and equation solvers;
Table 4 overviews functions for generating vectors with various sequences; Table 5 lists the main forms of
general functions of matrices; Table 6 lists various element-wise functions of matrices; Table 7 summarises
the set of functions and classes focused on statistics; Table 8 lists functions for signal and image processing.
Lastly, Table 9 provides examples of Matlab syntax and conceptually corresponding PyArmadillo syntax.
Figure 1 shows a simple PyArmadillo based Python program. See the online documentation at
https://pyarma.sourceforge.io/docs.html for more details and examples.

from pyarma import *

A = mat(4, 5, fill.ones)
B = mat(4, 5, fill.randu)

C = A * B.t()

C.print("C:")

Figure 1: A short PyArmadillo based Python program. See Tables 1 to 8 for an overview of the available
functionality.

Implementation & License

PyArmadillo relies on pybind11 [9] for interfacing C++ and Python, as well as on Armadillo [13, 14] for
the underlying C++ implementation of matrix objects and associated functions. Due to its expressiveness
and relatively straightforward use, pybind11 was selected over other interfacing approaches such as
Boost.Python [1] and manually writing C++ extensions for Python. In turn, Armadillo interfaces with low-level
routines in BLAS and LAPACK [2], where BLAS is used for matrix multiplication, and LAPACK is used
for various matrix decompositions/factorisations and equation solvers. As the low-level routines in BLAS
and LAPACK are considered as a de facto standard for numerical linear algebra, it is possible to use high
performance drop-in replacements such as Intel MKL [8] and OpenBLAS [18]. PyArmadillo is open-source
software available under the permissive Apache License 2.0 [3], making it useful in both open-source and
proprietary (closed-source) contexts [16].

https://pyarma.sourceforge.io/docs.html


Table 1: Subset of member functions and variables of the mat class, the main matrix object in PyArmadillo.

Function/Variable Description
.n rows number of rows (read only)
.n cols number of columns (read only)
.n elem total number of elements (read only)
[i] access the i-th element, assuming a column-by-column layout
[r, c] access the element at row r and column c
.in range(i) test whether the i-th element can be accessed
.in range(r, c) test whether the element at row r and column c can be accessed
.reset() set the number of elements to zero
.copy size(A) set the size to be the same as matrix A
.set size(n rows, n cols) change size to specified dimensions, without preserving data (fast)
.reshape(n rows, n cols) change size to specified dimensions, with elements copied column-wise (slow)
.resize(n rows, n cols) change size to specified dimensions, while preserving elements & their layout (slow)
.ones(n rows, n cols) set all elements to one, optionally first resizing to specified dimensions
.zeros(n rows, n cols) as above, but set all elements to zero
.randu(n rows, n cols) as above, but set elements to uniformly distributed random values in [0,1] interval
.randn(n rows, n cols) as above, but use a Gaussian/normal distribution with µ = 0 and σ = 1
.fill(k) set all elements to be equal to k
.for each(lambda val : ...) for each element, pass its value to a lambda function
.is empty() test whether there are no elements
.is finite() test whether all elements are finite
.is square() test whether the matrix is square
.is vec() test whether the matrix is a vector
.is sorted() test whether the matrix is sorted
.has inf() test whether any element is ±∞
.has nan() test whether any element is not-a-number
iter(A) iterator of matrix A
iterator(A, i, j) iterator of matrix A from the i-th element to the j-th
col iter(A, i, j) iterator of matrix A from the i-th column to the j-th
row iter(A, i, j) iterator of matrix A from the i-th row to the j-th
.print(header) print elements, with an optional text header
.save(name, format) store matrix in the specified file, optionally specifying storage format
.load(name, format) retrieve matrix from the specified file, optionally specifying format
[diag, k] read/write access to k-th diagonal
[i, :] read/write access to row i
[:, i] read/write access to column i
[a:b, :] read/write access to submatrix, spanning from row a to row b
[:, c:d] read/write access to submatrix, spanning from column c to column d
[a:b, c:d] read/write access to submatrix spanning rows a to b and columns c to d
[p, q, size(A)] read/write access to submatrix starting at row p and col q with size same as matrix A
[vector of row indices, :] read/write access to rows corresponding to the specified indices
[:, vector of col indices] read/write access to columns corresponding to the specified indices
[vector of indices] read/write access to matrix elements corresponding to the specified indices
.swap rows(p, q) swap the contents of specified rows
.swap cols(p, q) swap the contents of specified columns
.insert rows(row, X) insert a copy of X at the specified row
.insert cols(col, X) insert a copy of X at the specified column
.shed rows(first row, last row) remove the specified range of rows
.shed cols(first col, last col) remove the specified range of columns
.min() return minimum value
.max() return maximum value
.index min() return index of minimum value
.index max() return index of maximum value



Table 2: Subset of matrix operations involving overloaded Python operators.

Operation Description
A − k subtract scalar k from all elements in matrix A
k − A subtract each element in matrix A from scalar k
A + k, k + A add scalar k to all elements in matrix A
A ∗ k, k ∗ A multiply matrix A by scalar k
A + B add matrices A and B
A − B subtract matrix B from A
A ∗ B matrix multiplication of A and B
A @ B element-wise multiplication of matrices A and B
A / B element-wise division of matrix A by matrix B
A == B element-wise equality evaluation between matrices A and B

[caveat: use approx equal() to test whether all corresponding elements are approximately equal]
A != B element-wise non-equality evaluation between matrices A and B
A >= B element-wise evaluation whether elements in matrix A are greater-than-or-equal to elements in B
A <= B element-wise evaluation whether elements in matrix A are less-than-or-equal to elements in B
A > B element-wise evaluation whether elements in matrix A are greater than elements in B
A < B element-wise evaluation whether elements in matrix A are less than elements in B

Table 3: Subset of functions for matrix decompositions, factorisations, inverses and equation solvers.

Function Description
chol(X) Cholesky decomposition of symmetric positive-definite matrix X
eig sym(X) eigen decomposition of a symmetric/hermitian matrix X
eig gen(X) eigen decomposition of a general (non-symmetric/non-hermitian) square matrix X
eig pair(A, B) eigen decomposition for pair of general square matrices A and B
inv(X) inverse of a square matrix X
inv sympd(X) inverse of symmetric positive definite matrix X
lu(L, U, P, X) lower-upper decomposition of X, such that PX = LU and X = P’LU
null(X) orthonormal basis of the null space of matrix X
orth(X) orthonormal basis of the range space of matrix X
pinv(X) Moore-Penrose pseudo-inverse of a non-square matrix X
qr(Q, R, X) QR decomposition of X, such that QR = X
qr econ(Q, R, X) economical QR decomposition
qz(AA, BB, Q, Z, A, B) generalised Schur decomposition for pair of general square matrices A and B
schur(X) Schur decomposition of square matrix X
solve(A, B) solve a system of linear equations AX = B, where X is unknown
svd(X) singular value decomposition of X
svd econ(X) economical singular value decomposition of X
syl(X) Sylvester equation solver

Table 4: Subset of functions for generating vectors and matrices, showing their main form.

Function Description
linspace(start, end, n) vector with n elements, linearly spaced from start up to (and including) end
logspace(A, B, n) vector with n elements, logarithmically spaced from 10A up to (and including) 10B

regspace(start, ∆, end) vector with regularly spaced elements: [ start, (start + ∆), (start + 2∆), ..., (start + M∆) ],
where M = floor((end - start)/∆), so that (start + M∆) ≤ end

randperm(n, m) vector with m elements, with random integers sampled without replacement from 0 to n-1
randu(n rows, n cols) matrix with random values from a uniform distribution in the [0,1] interval
randn(n rows, n cols) matrix with random values from a normal/Gaussian distribution with µ = 0 and σ = 1
zeros(n rows, n cols) matrix with all elements set to zero
ones(n rows, n cols) matrix with all elements set to one



Table 5: Subset of general functions of matrices, showing their main form. For functions with the dim
argument, dim = 0 indicates traverse across rows (ie. operate on all elements in a column), while dim = 1 indicates
traverse across columns (ie. operate on all elements in a row); by default dim = 0.

Function Description
abs(A) obtain element-wise magnitude of each element of matrix A
accu(A) accumulate (sum) all elements of matrix A into a scalar
all(A,dim) return a vector indicating whether all elements in each column or row of A are non-zero
any(A,dim) return a vector indicating whether any element in each column or row of A is non-zero
approx equal(A, B, met, tol) return a bool indicating whether all corresponding elements in A and B are approx. equal
as scalar(expression) evaluate an expression that results in a 1×1 matrix, then convert the result to a pure scalar
clamp(A, min, max) create a copy of matrix A with each element clamped to be between min and max
cond(A) condition number of matrix A (the ratio of the largest singular value to the smallest)
conj(C) complex conjugate of complex matrix C
cross(A, B) cross product of A and B, assuming they are 3 dimensional vectors
cumprod(A, dim) cumulative product of elements in each column or row of matrix A
cumsum(A, dim) cumulative sum of elements in each column or row of matrix A
det(A) determinant of square matrix A
diagmat(A, k) interpret matrix A as a diagonal matrix (elements not on k-th diagonal are treated as zero)
diagvec(A, k) extract the k-th diagonal from matrix A (default: k = 0)
diff(A, k, dim) differences between elements in each column or each row of A; k = number of recursions
dot(A,B) dot product of A and B, assuming they are vectors with equal number of elements
eps(A) distance of each element of A to next largest representable floating point number
expmat(A) matrix exponential of square matrix A
find(A) find indices of non-zero elements of A; find(A > k) finds indices of elements greater than k
fliplr(A) copy A with the order of the columns reversed
flipud(A) copy A with the order of the rows reversed
imag(C) extract the imaginary part of complex matrix C
ind2sub(size(A), index) convert a linear index (or vector of indices) to subscript notation, using the size of matrix A
inplace trans(A) in-place / in-situ transpose of matrix A
join rows(A, B) append each row of B to its respective row of A
join cols(A, B) append each column of B to its respective column of A
kron(A, B) Kronecker tensor product of A and B
log det(x, sign, A) log determinant of square matrix A, such that the determinant is exp(x)*sign
logmat(A) complex matrix logarithm of square matrix A
min(A, dim) find the minimum in each column or row of matrix A
max(A, dim) find the maximum in each column or row of matrix A
nonzeros(A) return a column vector containing the non-zero values of matrix A
norm(A,p) p-norm of matrix A, with p = 1, 2, · · ·, or p = “-inf”, “inf”, “fro”
normalise(A, p, dim) return the normalised version of A, with each column or row normalised to unit p-norm
prod(A, dim) product of elements in each column or row of matrix A
rank(A) rank of matrix A
rcond(A) estimate the reciprocal of the condition number of square matrix A
real(C) extract the real part of complex matrix C
repmat(A, p, q) replicate matrix A in a block-like fashion, resulting in p by q blocks of matrix A
reshape(A, r, c) create matrix with r rows and c columns by copying elements from A column-wise
resize(A, r, c) create matrix with r rows and c columns by copying elements and their layout from A
shift(A, n, dim) copy matrix A with the elements shifted by n positions in each column or row
shuffle(A, dim) copy matrix A with elements shuffled in each column or row
size(A) obtain the dimensions of matrix A
sort(A, direction, dim) copy A with elements sorted (in ascending or descending direction) in each column or row
sort index(A, direction) generate a vector of indices describing the sorted order of the elements in matrix A
sqrtmat(A) complex square root of square matrix A
sum(A, dim) sum of elements in each column or row of matrix A
sub2ind(size(A), row, col) convert subscript notation (row,col) to a linear index, using the size of matrix A
symmatu(A) / symmatl(A) generate symmetric matrix from square matrix A
strans(C) simple matrix transpose of complex matrix C, without taking the conjugate
trans(A) transpose of matrix A (for complex matrices, conjugate is taken); use A.t() for shorter form
trace(A) sum of the elements on the main diagonal of matrix A
trapz(A, B, dim) trapezoidal integral of B with respect to spacing in A, in each column or row of B
trimatu(A) / trimatl(A) generate triangular matrix from square matrix A
unique(A) return the unique elements of A, sorted in ascending order
vectorise(A, dim) generate a column or row vector from matrix A



Table 6: Element-wise functions: matrix B is produced by applying a function to each element of matrix A.

Function Description
exp(A) base-e exponential: ex

exp2(A) base-2 exponential: 2x

exp10(A) base-10 exponential: 10x

trunc exp(A) base-e exponential, truncated to avoid∞
log(A) natural log: loge(x)

log2(A) base-2 log: log2(x)

log10(A) base-10 log: log10(x)

trunc log(A) natural log, truncated to avoid ±∞
pow(A, p) raise to the power of p: xp

square(A) square: x2

sqrt(A) square root:
√
x

floor(A) largest integral value that is not greater than the input value
ceil(A) smallest integral value that is not less than the input value
round(A) round to nearest integer, with halfway cases rounded away from zero
trunc(A) round to nearest integer, towards zero
erf(A) error function
erfc(A) complementary error function
lgamma(A) natural log of the gamma function
sign(A) signum function; for each element a in A, the corresponding element b in B is:

b =

 −1 if a < 0

0 if a = 0

+1 if a > 0

trig(A) trignometric function, where trig is one of:
cos, acos, cosh, acosh, sin, asin, sinh, asinh, tan, atan, tanh, atanh

Table 7: Subset of functions for statistics, showing their main form. For functions with the dim argument,
dim = 0 indicates traverse across rows (ie. operate on all elements in a column), while dim = 1 indicates traverse
across columns (ie. operate on all elements in a row); by default dim = 0.

Function/Class Description
cor(A, B) generate matrix of correlation coefficients between variables in A and B
cov(A, B) generate matrix of covariances between variables in A and B
hist(A, centers, dim) generate matrix of histogram counts for each column or row of A, using given bin centers
histc(A, edges, dim) generate matrix of histogram counts for each column or row of A, using given bin edges
kmeans(means, A, k, ...) cluster column vectors in matrix A into k disjoint sets, storing the set centers in means
princomp(A) principal component analysis of matrix A
running stat class for running statistics of a continuously sampled one dimensional signal
running stat vec class for running statistics of a continuously sampled multi-dimensional signal
mean(A, dim) find the mean in each column or row of matrix A
median(A, dim) find the median in each column or row of matrix A
stddev(A, norm type, dim) find the standard deviation in each column or row of A, using specified normalisation
var(A, norm type, dim) find the variance in each column or row of matrix A, using specified normalisation

Table 8: Subset of functions for signal and image processing, showing their main form.

Function/Class Description
conv(A, B) 1D convolution of vectors A and B
conv2(A, B) 2D convolution of matrices A and B
fft(A, n) fast Fourier transform of vector A, with transform length n
ifft(C, n) inverse fast Fourier transform of complex vector C, with transform length n
fft2(A, rows, cols) fast Fourier transform of matrix A, with transform size of rows and cols
ifft2(C, rows, cols) inverse fast Fourier transform of complex matrix C, with transform size of rows and cols
interp1(X, Y, XI, YI) given a 1D function specified in vectors X (locations) and Y (values),

generate vector YI containing interpolated values at given locations XI
interp2(X, Y, Z, XI, YI, ZI) given a 2D function specified by matrix Z with coordinates given by vectors X and Y,

generate matrix ZI containing interpolated values at coordinates given by vectors XI and YI



Table 9: Examples of Matlab/Octave syntax and conceptually corresponding PyArmadillo syntax. Note that
for submatrix access the exact conversion from Matlab/Octave to PyArmadillo syntax will require taking into
account that indexing starts at 0.

Matlab & Octave PyArmadillo Notes
A(1, 1) A[0, 0] indexing in PyArmadillo starts at 0, following Python convention
A(k, k) A[k-1, k-1]

size(A,1) A.n rows member variables are read only
size(A,2) A.n cols
size(Q,3) Q.n slices Q is a cube (3D array)
numel(A) A.n elem .n elem indicates the total number of elements
A(:, k) A[:, k] read/write access to a specific column
A(k, :) A[k, :] read/write access to a specific row
A(:, p:q) A[:, p:q] read/write access to a submatrix spanning the specified cols
A(p:q, :) A[p:q, :] read/write access to a submatrix spanning the specified rows
A(p:q, r:s) A[p:q, r:s]

Q(p:q, r:s, t:u) Q[p:q, r:s, t:u] Q is a cube (3D array)
Q(:, :, k) Q[:, :, k] access one slice
Q(:, :, k) Q[single slice, k] access one slice, with the slice provided as a matrix
A ′ A.t() or trans(A) transpose (for complex matrices the conjugate is taken)
A .′ A.st() or strans(A) simple transpose (for complex matrices the conjugate is not taken)
A = zeros(size(A)) A.zeros() set all elements to zero
A = ones(size(A)) A.ones() set all elements to one
A = zeros(k) A = zeros(k, k) create a matrix with elements set to zero
A = ones(k) A = ones(k, k) create a matrix with elements set to one

C = complex(A,B) C = cx mat(A,B) construct a complex matrix from two real matrices

A ∗ B A ∗ B ∗ indicates matrix multiplication
A .∗ B A @ B @ indicates element-wise multiplication
A ./ B A / B / indicates element-wise division
A \ B solve(A,B) solve a system of linear equations
A = A + 1 A += 1
A = A − 1 A −= 1
A = [ 1 2; A = mat([ [ 1, 2 ],

3 4; ] [ 3, 4 ] ])
X = [ A B ] X = join rows(A,B)
X = [ A; B ] X = join cols(A,B)
A A.print(“A:”) print the entire contents of A
save -ascii ‘A.txt’ A A.save(“A.txt”, raw ascii) Matlab/Octave matrices saved as ascii text are readable
load -ascii ‘A.txt’ A.load(“A.txt”, raw ascii) by PyArmadillo (and vice-versa)
A = rand(2,3) A = randu(2,3) randu generates uniformly distributed random numbers
B = randn(4,5) B = randn(4,5)
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